The History of Augmented Reality

The innovation behind augmented reality not only plays a heavy role in the future development of medicine, digital culture, and the military, but it supplements the advancements made in therapy, education, and business.

     With its interdisciplinary nature, augmented reality has rapidly shifted its way to the forefront of the technological world. Unlike virtual reality, which functions on artificially-crafted environments, augmented reality enhances objects of the physical world as a way to amplify and communicate re-integrated information back to users.

     The idea behind augmented reality was first seen through Morton Heilig’s research and development, as he aimed to heighten the senses used during cinematic experiences; by 1955, albeit still before digital computing, he debuted his prototype, Sensorama, in hopes that it would create a more vivid and captivating environment at the movie theaters. By the 1960s, Ivan Sutherland patented the first head mounted display (HMD), a device that has been consistently upgraded and is in continual use now.

     From Sutherland’s invention onward, numerous tools have been implemented into the world of augmented reality, such as handheld displays and spatial displays. However, most common remains the HMD, which requires users to wear the device on their head in order to view the scientific visualization. They are compatible with video-see-through systems and optical-see-through systems alike, but due to optical-see-through system’s necessity for two cameras, video-see-through systems are typically more in demand; the virtual image thus only needs to be synchronized with the physical world. Handheld displays make use of smaller computing devices rather than headsets, and they use video-see-through systems to overlay graphics. Examples of modern-day handheld displays include smart-phones, PDAs, and tablet PCs, which employ augmented reality for applications such as GPS, accelerometers, and cameras. Spatial augmented reality displays utilize video projectors and tracking technology as a way to present information on the physical world. Because there is no necessity of wearing or holding devices, spatial displays allow and encourage collaboration, ultimately making it a popular option in research and labs. However, because of the essential components of combiners, screens, and holograms, spatial augmented reality displays are not compatible with mobile applications, therefore limiting its use with the general public.

Augmented reality enhances objects of the physical world as a way to amplify and communicate re-integrated information back to users

In regards to interaction between the user and the virtual content, augmented reality relies on applications of AR interfaces, collaborative interfaces, hybrid interfaces, and emerging multimodal interfaces. Tangible interfaces depend on real objects in the user’s surroundings, such as video game controllers; the exploitation of physical tools cultivates a strong connection between the real and virtual world. Collaborate interfaces utilize multiple displays and can be seen in the workplace through remote sharing and teleconferences. Hybrid interfaces, such as gadgets which use visual and auditory displays, involve multiple interfaces as a way to maximize interaction and enhance numerous senses at a time. Lastly, multimodal interfaces augment real objects through language and behaviors, so users are required to physically interact with the objects themselves, thus fostering a robust and expressive interaction.

Through the different interfaces and displays, augmented reality is blanketed with flexibility and adaptability; now expanding past traditional usage in high-level engineering, augmented reality is becoming progressively more integrated into daily life. Slowly but surely, it is establishing itself as a foundation for growth and development in all aspects of society.

Helen Yang